诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
“让更多人把心中爱的源泉激活”******
“让更多人把心中爱的源泉激活”
——走进话剧《桂梅老师》
光明日报记者 徐鑫雨 张 勇
“老师做的事我们也能做,所有人都付出,爱就有了良性循环!无数人的爱加起来,才是真正的——大爱无疆!”
这是话剧《桂梅老师》中同学们的台词,振聋发聩。
“爱要形成良性循环。”这是“七一勋章”获得者、云南华坪女子高级中学校长张桂梅常说的话。在第十三届中国艺术节上,云南省话剧院以张桂梅为原型创作的话剧《桂梅老师》,荣获我国舞台艺术领域的政府最高奖——文华大奖。
时隔18年,云南戏剧作品再次荣获文华大奖。《桂梅老师》获奖秘诀何在?用话剧形式塑造英模人物难点在哪里?西南边疆云岭高原为何能培育出《桂梅老师》这样的艺术精品?
话剧《桂梅老师》剧照 光明日报记者 张勇摄/光明图片
十二年的苦寒磨炼
2009年,在云南英模先进事迹颁奖晚会上,云南省话剧院创作演出了王宝社担任编剧、导演的短剧《感恩的心》,这是云南省话剧院与张桂梅的第一次接触。
“从那时起,我们对桂梅老师留下了深刻的印象,创作一部以张桂梅感人事迹为题材的原创话剧,一直埋在云南省话剧院和王宝社老师心中。”导演常浩回忆道。在酝酿了十余年后,编剧、导演王宝社于2020年写下了话剧《桂梅老师》。
虽然有了好剧本,但摆在话剧院面前的仍是重重困难。
“第一难的不是资金、不是时间,而是没有演员。”常浩说,“我和宝社老师算来算去,终于攒够了4位老师、5位学生、3个孩子。面对缺少演员的困难,话剧院的演员们付出了许多汗水。在剧中扮演女高学生的李欣瑶已经能够在5位女高学生角色之间任意转换,准备随时顶上去。”
“一直以来,演员们的心中都有一团火。大家对桂梅老师的崇敬变成了一种责任,想通过话剧让更多人把心中爱的源泉激活。”张桂梅的扮演者,云南省戏剧家协会驻会副主席、国家一级演员李红梅说。
创作一部能留得下来的作品,需要沉下心来对人物、事件做深入的研究。2009年开始,《桂梅老师》主创人员便对张桂梅的事迹进行持续不断地追踪,12年间,积累了400多个相关素材,通过长期观察、提炼、演绎,形成了有深度、有温度的作品。
李红梅多次到华坪采风,从早到晚,跟着张桂梅查寝、家访、开校会,用脑用心用笔记录着她的言谈举止。她凭借着12年来对张桂梅的观察与了解,成功塑造出了桂梅老师这一形象。
“桂梅老师身上让我感触最深的品质就是坚守。”在剧中饰演宣讲队成员等角色的章超说。
把英模人物塑造得有血有肉
创作英模人物题材的戏剧,难点在于如何塑造一个真实可信、有血有肉的典型形象。桂梅老师真的形体、真的情感、真的病痛,都真真切切地展示在舞台上。
“《桂梅老师》从普通人的视角观察英模、从生活的细节中发现英模的方式,构成了这部作品的艺术特色之一。”《文艺报》新闻部主任徐健说。
2021年6月《桂梅老师》在云南昆明首演以来,云南话剧院收到了许多反馈,其中一条留言这样写道:“你相信光吗?看完话剧《桂梅老师》,让我相信一件事,人皆可以为尧舜。”云南省话剧院院长马捷看到之后十分感动:“剧中的英模人物形象,让大家觉得可亲、可敬、可学,是对我们最大的认可。”
“主创们立志突破同质化,从客观生活出发,从真实人物出发,运用逆向思维的普遍性、批判性和新颖性,抛掉概念化,提纯化的老套,把桂梅老师塑造得很真实、很生动、很感人。”剧作家、戏剧评论家欧阳逸冰如此评价。
云南省文化和旅游厅副厅长王江红说:“时代需要英模来激励人们,《桂梅老师》诠释了大爱无疆的精神,讲出了无私奉献的时代精神。”
《桂梅老师》为何能从西南边疆脱颖而出
如何开拓市场、票房?文艺院团的价值何在?这些问题也曾经困扰云南话剧院。
“中央关于文艺来源于人民、文艺要服务于人民的要求,给我们指明了创作方向,激励我们去讴歌时代、讴歌人民、讴歌英雄!”马捷说。于是《鲁甸72小时》《农民院士》《桂梅老师》等优秀舞台作品在云南话剧院陆续诞生。
如今,《桂梅老师》已分别赴北京、重庆等10多个城市和云南省演出60余场。2023年,该剧将启动第二轮全国巡演。
《桂梅老师》为什么能脱颖而出?
王江红表示,《桂梅老师》的成功,得益于近几年来云南省实施的“云南文化精品工程”“云岭文化名家工程”,重视运用文艺形式宣传张桂梅等先进典型,在全省遴选出一批重点创作扶持作品建立项目库,首批入库6部作品中,以张桂梅事迹为题材的就有3部,《桂梅老师》名列其中。云南对项目库作品建立专家帮扶机制,对《桂梅老师》等重点作品进行指导扶持。
“正因为这些文艺政策的鼓励和培育,激励了云南话剧院等文艺院团和广大文艺工作者创作文艺精品的热情,才涌现出《桂梅老师》等一批优秀舞台艺术作品。”王江红感慨地说。
《光明日报》( 2022年12月27日 09版)
(文图:赵筱尘 巫邓炎)